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Scaling properties of self-expanding surfaces
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Scaling properties of self-expanding surfaces are studied with a comparison to those of self-flattening
surfaces@Phys. Rev. E66, 040602~R! ~2002!#. The evolution of self-expanding surfaces is described by a
restricted solid-on-solid type monomer deposition-evaporation model in which both deposition at the globally
lowest site and evaporation at the globally highest site are suppressed. We find numerically that equilibrium
surface fluctuation has a scaling behavior with a roughness exponenta.1 in one dimension~1D!. In contrast,
2D equilibrium surfaces show the same dynamical scaling behavior witha50 (log) and dynamic exponent
z.5/2 as 2D self-flattening surfaces. Stationary roughness can be understood analytically by relating the
self-expanding growth model to self-repelling random walks. In the case of nonequilibrium growing/eroding
surfaces, self-expanding dynamics cause the fluctuation of surfaces to be characterized bya.1 in both 1D and
2D.
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Dynamical scaling properties for fluctuating surfaces u
der thermal white noise have been studied extensively by
of the scaling ansatz@1#

W5La f ~ t/Lz!5H La, t@Lz,

tb, t!Lz,
~1!

where W is the root-mean-square fluctuation of surfa
heights andb5a/z. Dynamical scaling properties of suc
kinetic roughenings are now well documented and classifi
like the Edwards-Wilkinson~EW! universality class@2#, the
Kardar-Parisi-Zhang~KPZ! universality class@3#, etc. @1#.

Recently we have introduced a global mechanism to s
press surface fluctuations in addition to ordinary local s
face tension@4#. We call it aself-flattening~SF! mechanism
@5# to reduce the growth~erosion! probability at the globally
highest~lowest! point on the surface. The SF model is phy
cally related to the various dynamic evolution models w
global constraints, such as multiparticle-correlated surf
evolution models@6#, dissociative dimer models@7,8#, even-
visited random walks@7#, self-attracting walks@9#, random
walks with static traps@10#, and the motion of the step on
vicinal surface where its motion is bounded by two neig
boring steps@11#. Physically, the partition function@5,12# for
equilibrium SF surfaces is

Z5 (
RSOS conf.

e2kS~S[hmax2hmin11!, ~2!

where the summation is over all height configurations sa
fying the restricted solid-on-solid~RSOS! condition, and
hmax (hmin) is the globally maximum~minimum! height for a
given configuration. SF dynamics is a sort of Metropol
type evolution @5,12# based on the partition function~2!,
where deposition ~evaporation! at the site with h
5hmax (hmin) increasesSby one unit, and these attempts a
accepted with Boltzmann-type probabilitye2k (k.0). This
global type suppression makes the equilibrium surface
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rough, with a.1/3 in one dimension~1D! instead of the
normal random walk valuea51/2.

Other phases are also expected from the partition func
~2! apart from the SF phase fork.0. Fork50, equilibrium
surfaces belong to the EW class@2,4# and nonequilibrium
growing/eroding surfaces belong to the KPZ class@3#. For
k,0, S should have a tendency to expand itself, and
self-expanding~SE! mechanism dominates. A 1D equilib
rium surface can be mapped to the time trajectory o
walker by identifying the heighth(x) at each columnx with
the positionn(t) at the stept5x. In this mapping, the EW
class fork50 corresponds to the normal random walk a
this correspondence explains whya51/2 for the EW class.
The SF phase fork.0 then corresponds to the so-calle
self-attracting~timid! random walks@9#, in which the walker
tends to visit previously visited sites, and the corresponde
also explainsa51/3 @5#. The SE phase fork,0 is then
equivalent to the self-repelling walks@9# that visit a new site
more heavily than a previously visited site. In the surfa
evolution sense a new site means a new height which is
in a given surface configuration, and the increase ofS is
more favored in the next evolution step. A 2D SE surfa
which deals with the membrane fluctuation is complet
different from a 2D walk model which deals with polyme
fluctuations. 2D SE surfaces could be physically related
self-avoiding membranes@13#.

In this Brief Report, we want to investigate the scalin
properties of SE surfaces (k,0) by using a Metropolis-type
evolution rule from the partition function~2!. In our model
we assume that the heighth(rW) at siterW on aD-dimensional
hypercubic lattice has only integer values. The RSOS c
straintuh(rW1eî)2h(rW)u<1 is always imposed, whereeî is a
primitive lattice vector in thei th direction (i 51, . . . ,D).
The evolution rule for SE dynamics is as follows. First, s
lect a siterW randomly. Next, deposit a particleh(rW)→h(rW)
11 with probability p or evaporate a particleh(rW)→h(rW)
21 with probabilityq512p. Equilibrium surfaces are the
surfaces forp5q51/2, while nonequilibrium surfaces ar
©2004 The American Physical Society01-1
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those for pÞq. For the SE mechanism, we need a slig
variation of the evolution rule at the extremal heightshmax
and hmin : both the deposition attempthmin→hmin11 at h
5hmin and the evaporation attempthmax→hmax21 at h
5hmax are accepted only with probabilityu. At u51, the
ordinary RSOS model@14# is recovered.

Physically, SE dynamics is simply Metropolis type evol
tion with the partition function~2! with k,0 to reach equi-
librium. Deposition~erosion! at hmin (hmax) which decreases
S by 1 is accepted with the Boltzmann type probabilityu
5e2uku. Any other attempts are always accepted, becausu
5eukDSu.1. In contrast, SF dynamics@5# suppresses depo
sition ~erosion! attempt athmax (hmin), which increasesS.

To see the scaling properties of SE surfaces, we perf
numerical simulations, starting from a flat surface of line
size L with periodic boundary conditions. We measure t
surface widthW. First we report the numerical results fo
equilibrium surfaces (p5q). In 1D, we run simulations for
L525, . . . ,211 and variousu. Numerical data are obtaine
after averaging over at least 300 independent samples
order to extract the stationary property, we should estim
Ws(L) @[W(L,t→`)#. For efficient estimation ofa, we
introduce an effective exponent

aeff~L !5 ln@Ws~2L !/Ws~L !#/ ln2. ~3!

aeff(L) for variousu are plotted in Fig. 1. Close tou51, our
data show large corrections to scaling as expected, due t
presence of the EW fixed point (a51/2) atu51. However,
the asymptotic estimates seem to be independent ofu. We
obtaina51.00(1) for allu.

For the early-time dynamical behavior, we showW(L,t)
for u50.6 andu50.1 in Fig. 2. To see whetherW grows
algebraically asW;tb, we introduce another effective expo
nentbeff ,

FIG. 1. Effective exponentaeff versus 1/L for 1D self-
expanding equilibrium surfaces. All data for various values ou
converge to 1 rather nicely in theL→` limit. System sizes used ar
L525, . . . ,211.
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beff~ t !5
lnW~ t !2 lnW~ t/10!

lnt2 ln~ t/10!
. ~4!

beff(t) for u50.1 and 0.6 are plotted in the inset of Fig.
After initial EW behavior (b51/4), beff seems to vary con-
tinuously until the saturation regime begins. Unlike S
growth models, a stabilized time zone ofbeff for both u
50.1 andu50.6 hardly exists. This result means thatW of
1D SE surfaces does not seem to follow the power lawW
.tb.

To see the time-dependent behavior more carefully
study the time evolution of the surface configuration. Figu
3~a! shows the time evolution of 1D equilibrium SE surfac
for u50.5 in a typical simulation sample. Initially the con
figurations are nearly the same as those in other growth m
els which satisfy the scaling law~1!. But soonW grows
rapidly and surfaces form groove structures like those at
5(25,100,500)3104. The more specific structure of th
groove is shown in the inset of Fig. 3~a!, which is a snapsho
of the surface configuration whenW has the maximal value
among the fluctuatingW8s in the saturation regime (t@1).
The grooved structure is very similar to the surface morph
ogy of other growth models witha51 like the multiparticle-
correlated surface growth model@6,12# and conserved RSOS
~CRSOS! model @15#. The CRSOS model is a stochast
model which is believed to follow a Lai–Das Sarma–Villa
~LSV! equation@16,17#. Recently, a similar phenomenon t
our case, i.e., rapid unstable growth, was found in a stud
the discretized LSV equation@18#. However, the rapid
growth for the discretized LSV equation originated from t
nonlinear term in the LSV equation. Furthermore, the ra

FIG. 2. Plots of lnW against lnt for 1D self-expanding equilib-
rium surfaces atu50.1 andu50.6. System size used isL5211.
The solid line represents the relationW.tb (b51/4). W for t
,tEW follows EW behavior (b51/4) fairly well. In the inset, we
plot beff versust for 1D self-expanding equilibrium surfaces.
1-2
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growth was found to induce instability, so thatW seems to
grow indefinitely and thus never saturates. In contrast,
time-dependent behavior of the SE surfaces is quite diffe
as shown in Figs. 2 and 3~a!. Initially, when the SE mecha
nism is still immature, the growth follows 1D EW behavio
W.t1/4. This EW behavior is clearly seen in the time regi
t,tEW in Fig. 2, whereW(t) for u50.6 is nearly the same
as that foru50.1. Fort.tEW, the SE mechanism become
mature and makesW(t) behave differently from the power
law behaviorW.tb. But the SE mechanism makesW satu-
rate as shown in Figs. 2 and 3~a! to satisfy Ws.L. This
means the SE mechanism never induces unstable growt

Stationary properties of 1D SE surfaces can be unders
analytically. The 1D SE surface can be mapped to s
repelling walks@9# that tend to visit a new site with heavie
weights. Since the mean number of sites^S& of L-step self-
repelling walks scales linearly withL @9#, a 1D SE surface is
also expected to show the scaling behaviorW.^S&.L. The

FIG. 3. ~a! Time evolution of 1D equilibrium SE surface foru
50.5 in a typical simulation sample. Typical surface configurat
with a maximalW is shown in the upper right corner. Used syste
size isL528. ~b! The same figure for the 1D nonequilibrium grow
ing SE surface foru50.5. The numbers in the bottom of eac
figure denote Monte Carlo times when each configuration is tak
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dynamical behavior fort.tEW that deviates fromW.tb is
from the SE mechanism. The dynamical behavior direc
from the SE mechanism is hard to understand analytica
because the continuum equation for SE dynamics must c
tain a global type nonlinear term. Further study in this dire
tion is left for future research into SF dynamics@5#.

The 2D equilibrium SE surface is found to satisfy th
dynamic scaling relation

W2~L,t !5
1

2pKG
ln@Lg~ t/Lz!# ~5!

with z52.5 andKG50.916, whereWs
2.(1/2pKG)lnL, and

W2(t!Lz).(1/2pKGz)lnt. These scaling properties of 2D
SE surfaces are exactly the same as those of 2D SF sur
@5#. In particular, the logarithmic behavior ofWs

2 with the
sameKG (KG

0 50.916) @19# is very surprising in that it oc-
curs for both SE and SF surfaces, even though the
mechanism is physically the completely reverse of the
mechanism. Furthermore, we find noL-dependent correc
tions to the logarithmic scaling as in the dimer model@20#.
The common dynamical scaling behavior of both 2D SE a
SF surfaces also means that EW-like logarithmic behavio
Ws

2 is very robust against both SE and SF mechanisms.
cently, a theory has been suggested for the stationary p
erties of general SF surfaces@21#. In that theory, the SF
mechanism is argued to induce noL-dependent correction

n.

FIG. 4. Plots ofaeff against 1/L in 1D and 2D nonequilibrium
growing surfaces atp51 andu50.5. All the data converge to 1 in
the L→` limit. System sizes used areL525, . . . ,211 in 1D and
L524, . . . ,28 in 2D. The upper inset shows the early-time beha
ior of W. Solid lines represent the early-time KPZ behaviors w
b51/3 in 1D andb51/4 in 2D. Fort,tKPZ W for both 1D and 2D
nonequilibrium surfaces follows the KPZ behavior fairly well. W
plot beff againstt for the nonequilibrium growth in the lower inse
1-3
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when Ws without the SF mechanism is logarithmic (a
50). The theory also seems to hold for the SE mechanism
2D.

We now discuss the simulation results for nonequilibriu
growing/eroding SE surfaces (pÞq). We report the numeri-
cal results forp51 andu50.5. The system sizes used a
L525, . . . ,211 in 1D andL524, . . . ,28 in 2D. In Fig. 4, we
plot aeff against 1/L. From Fig. 4, we can estimatea.1 for
both 1D and 2D surfaces. The result,a.1, for the nonequi-
librium 1D and 2D surfaces is the same as that for 1D eq
librium surfaces. This fact tells us that the SE mechanism
apparently enhanced by external bias of the growth~or ero-
sion!, so that nonequilibrium SE surfaces in 2D as well
1D satisfy a51. This kind of enhanced SE behavior ca
also be seen from the early-time dynamical behavior. As
can see from the inset for the time dependence ofW(L,t)
and the inset forbeff of Fig. 4, the early-time dynamica
behaviors of nonequilibrium SE surfaces in both 1D and
are qualitatively very similar to that of 1D SE equilibrium
surfaces~see Fig. 2!. Initially, when the SE mechanism i
still immature, the nonequilibrium growth follows KPZ be
haviors,W.t1/3 in 1D andW.t1/4 in 2D. This KPZ behav-
ior is clearly seen in the time regiont,tKPZ as shown in the
upper inset of Fig. 4. Fort.tKPZ , the SE mechanism with
the effect of external bias of growth makesW(t) grow more
rapidly and makesW(t) behave differently from the power
e

d

s.

nts
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law behaviorW.tb, as in the 1D equilibrium case. The tim
evolution of nonequilibrium surface configurations as sho
in Fig. 3~b! is also very similar to that of 1D SE equilibrium
surfaces@Fig. 3~a!#. From Figs. 3~b! and 4 we can see tha
the SE mechanism appears to be enhanced by external
of growth. The scaling behavior of SE growing surfaces
nearly the same in both 1D and 2D.

In summary, we studied the scaling properties of se
expanding surfaces in 1D and 2D. Scaling behavior witha
.1 distinct from the EW class is shown for 1D equilibriu
surfaces. The result can be understood analytically fr
mapping to 1D self-repelling walks. The dynamical behav
of 1D SE equilibrium surfaces deviates from the power-l
behaviorW.tb and shows an anomalously rapid growth
W beforeW saturates. In contrast, the SE mechanism in
does not change the EW stationary property. FurthermoreW
of 2D equilibrium SE surfaces shows the same scaling
havior ~5! as 2D SF surfaces. In both 1D and 2D, noneq
librium SE surfaces show nearly the same dynamical beh
ior as the 1D equilibrium SE surface. The nonequilibriu
surfaces in both 1D and 2D have the common station
propertya.1.
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